پاورپوینت کامل و جامع با عنوان اصول پایه ای مکانیک آماری در 51 اسلاید

 

 

 

 

 

 

 

 

در مکانیک آماری با سیستمهای بزرگ سر و کار داریم. یعنی سیستمهایی که در آنها تعداد ذرات زیاد است (N ≈ 1023). در چنین سیستمهایی به دنبال یافتن پاسخ صریح به سوالات زیر هستیم:

  • سطوح انرژی قابل دسترس کدامند؟
  • چگونه ذرات خود را در این سطوح توزیع می‌کنند؟
  • اگر شرایط سیستم عوض شود (مثلا با تغییر دما) توزیع ذرات چگونه تغییر می‌کند؟
  • با معلوم بودن تابع توزیع چگونه می‌توان کمیتهای تعریف کننده خواص گرمایی سیستم (مانند ظرفیت گرمایی) را بدست آورد؟

گر چه سیستمهای ماکروسکوپی (بزرگ) را مطالعه می‌کنیم، اما رفتار ذرات را بطور جداگانه بررسی می‌کنیم. یعنی دیدگاه میکروسکوپی بکار می‌بریم. در چنین برخوردی می‌دانیم که تعیین دقیق تاریخچه ذرات کاملا مشخص نیست. از اطلاعات قبلی می‌توان گفت که یک ذره تحت تأثیر نیروی معینی قرار می‌گیرد.

روشهای مطالعه سیستمهای چند ذره‌ای

در مورد دو ذره ، برهمکنش تعریف شده‌ای بین آنها برقرار است که می‌تواند هم بطور کلاسیک و هم به صورت کوانتومی مطالعه شود. برای یک سیستم سه ذره‌ای مطالعه دقیق ممکن نیست، زیرا تأثیر حضور ذره سوم در دو ذره دیگر به دقت قابل تعیین می‌باشد. با این صحبت به نظر می‌رسد که برای سیستمهای ماکروسکوپی ، ما با یک مشکل اساسی روبرو هستیم. عمدتا در مطالعه سیستمهای چند ذره‌ای دو روش مطرح می‌شود که عبارتند از:

  • برهمکنش بین ذرات قابل اغماض است. (مکانیک آماری)
  • مطالعه سیستمهایی که دارای برهمکنش می‌باشند (نظریه چند ذره‌ای).

دیدگاه مکانیک آماری

دیدگاه مکانیک آماری میکروسکوپی است. بدین معنی که در این دیدگاه تا حد امکان جزئیات ساختاری سیستمها منظور می‌شود. لذا به علت زیاد بودن تعداد ذرات صحبت به زبان احتمال خواهد بود. مثلا احتمال یافتن ذره در یک سطح انرژی یا تراز انرژی. بطور اصولی می‌توان ذرات را بطور جداگانه انتخاب نموده و صور مختلف آرایشهای آنها را در نظر گرفت. اما چون احتمال مربوط به اشکال مختلف آرایشها اختلاف چندانی ندارند، پس متوسط گیری در این مقوله زیاد بد نمی‌باشد.

ارتباط مکانیک آماری با ترمودینامیک

ترمودینامیک یک تئوری کلاسیک و قدیمی است. (علم حرکت و گرما Heat and motion). در این علم که دارای دیدگاه ماکروسکوپی است، کلیه سیستمها بدون توجه به ساختار اتمی و با انتصاب کمیات قابل اندازه گیری مثل حجم ، فشار ، آنتالپی ، انرژی داخلی ، دما و آنتروپی مطالعه می‌شود. ترمودینامیک مبتنی بر سه قانون بسیار مهم و البته تجربی است که به قوانین ترمودینامیک معروف هستند و در ترمودینامیک مورد بحث قرار می گیرند.

این علم قادر است روابط بی‌شماری بین کمیات مختلف مثل حجم و تعداد ذرات سیستم (V,N) یا کمیات مکانیکی مانند فشار و انرژی داخلی (U,P) و یا کمیات گرمایی مانند آنتروپی و دما (S,T) برقرار کند. به علاوه این علم قادر است ارتباط بین خواص مشخصه سیستمها ، مثل گرمای ویژه ، تراکم پذیری و تحرک الکترونها را ایجاد نماید. اما این درس نمی‌تواند مقادیر مطلق کمیات مذکور را تعیین کند و این وظیفه مکانیک آماری است که ، علاوه بر رفع این نقص و تأیید مجدد قوانین ترمودینامیکی ، می‌تواند دما را به انرژی ذرات اتصال دهد، تئوری جنبشی گازها Kinetic Theory of Gasses) و آنتروپی را در یک طریق بخصوصی به بی‌نظمی اتصال دهد. (معادله معروف بولتزمن)

 

فهرست مطالب:

بررسي ميكروسكوپي

انرژي گاز كامل تك اتمي

فرض اساسی مکانیک آماری

ذرات كلاسيك (گاز بولتزمن)

شمارش حالتها

تقریب استرلینگ

تابع پارش يا افراز

آنتروپي و دما

ماكزيمم آنتروپي و دما

آنتروپي ملاك بي ‌نظمي

‌نظم و قانون دوم ترموديناميك

‌مايع بي ‌نظم

‌مايع كره سخت

‌آنتروپي اطلاعات

کمیات ترمودینامیکی

انرژی آزاد هلمهولتز

قواعد ساده برای کمیات ترمودینامیکی

‌آنتروپي گاز ايده ‌آل

متوسط یک کمیت فیزیکی

تصویر ساده ای از یک جامد

سیستم نوسانگر هارمونیک

مثال ها

و…


 دانلود جدیدترین فایل های لایه باز در پی اس دی نگار

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *